广州市嘉晟精密科技有限公司

机床商务网免费3

收藏

将SPRINT 3D扫描技术与Productivity+ CNC软件结合在一起

时间:2022-09-05      阅读:358

 

ODK UMPO PAO的叶盘具有高度复杂性和严苛的制造精度要求,这意味着其各式叶盘的精铣过程是一个劳动密集型且

成本日益增加的工艺。

尽管使用触发式测头可进行机内叶盘测量,但在铣削后需要将每个工件从数控机床上取下进行离线测量和检测,然后再重新装回机床上进行后续加工。这个过程需要重复多次,而且容易受到人为误差的影响。

据ODK UMPO PAO推断,机外检测和铣削过程约占叶盘生产总人力成本的30%至60%。此外,叶片尺寸偏差(在前缘和后缘加工之后)的统计分析结果证明存在误差。

结果显示,叶片横截面的偏差为:残留余量波动±0.064 mm,实际轮廓偏差0.082 mm。纵截面的偏差与横截面相似:残留余量波动±0.082 mm,实际轮廓偏差0.111 mm。
导致边缘加工过程中产生偏差的主要原因可归结为:加工过程中机床的五轴运动误差;叶片在切削过程中由于其刚性低而发生弹性变形;以及刀具在金属切削过程中发生弹性变形。
ODK UMPO PAO专家Fanis Salakhov说:“由于边缘加工过程中会产生偏差,因此工程师需要始终监控机床运转,以便随时调整控制软件以及重新安装工件。”
“这个过程需要大量的人工干预,但是由于人为误差不可避免,会导致废品率增加。我们迫切需要开发一种全新的解决方案,以提高叶盘铣削速度和精度。”

e285074e20a64b7e9f827dab2e0d0459
解决方案
ODK UMPO PAO选择与NPA Tekhnopark Aviation Technology一起开发和部署所需的制程控制技术。该公司与ODK UMPO PAO同处一地,专门为当地工业界提供教育、科研和工程服务。
Tekhnopark技术科学博士兼创新部副部长Simon Starovoytov说:“我们已经与雷尼绍合作多年,我们在各式机床上配备雷尼绍触发式测头来达到的测量精度。”

“ODK UMPO PAO的应用很显然需要基于扫描测头开发软件,因此我们决定向雷尼绍寻求合作。雷尼绍用于机床的SPRINT 3D扫描测量技术满足了我们的所有技术要求。”

SPRINT™技术
OSP60机内3D扫描测头搭载雷尼绍的SPRINT技术。
测尖(测球)可沿叶盘表面进行精确测量移动,测头能够精确记录高分辨率测针偏折数据,获取超灵敏测尖在X、Y和Z轴上的亚微米级运动数据。
OSP60测头采用高速、抗噪的光学传输连接,每秒可将1000个XYZ测尖中心数据点传输到OMM-S接收器。
然后,使用高级算法处理测头偏折数据与机床位置编码器数据,以生成精确的叶盘表面数据,最后再利用这些数据精确计算特征位置、大小和形状。
Productivity+™技术
使用Productivity+ CNC plug-in软件可实现高达15,000 mm/min的扫描速度,机内测量速度有时甚至可以比传统触发式系统快5倍。在机床上扫描叶盘,则无需在加工过程中取下工件。
该软件可在屏幕上实时显示高精度测量结果,并利用这些数据自动调整机床设置,以便进行后续的精铣过程。还可将测量报告导出到文件中进行分析或用于执行质保。
使用现有的机外图形编程工具可基于实体模型几何特征快速、轻松地生成叶盘检测程序,同时可通过Productivity+交互式前端平台简单易懂的图形屏幕来编辑和模拟测头检测程序,用户无需直接应对复杂的NC代码。

结果
引入Productivity+软件和OSP60测头之后,ODK UMPO PAO的叶盘制造过程的加工精度、速度和人力成本发生了显著改变。
通过在机床上对叶盘进行高速3D扫描和测量,大幅节省了生产时间,从而显著提高了数控机床的生产效率。
在叶盘铣削精度方面,加工后的叶盘横截面和纵截面偏差均有显著改进:从原来的0.082 mm和0.111 mm提高到现在的1 µm和28 µm。
在机床人员配备方面,Starovoytov说:“制程控制模式的执行能够基于OSP60测头提供的3D叶片扫描数据,自动调整CNC控制程序。这意味着工程师不再需要始终监控机床运转。”
Salakhov总结说:“将SPRINT 3D扫描技术与Productivity+ CNC软件结合在一起,即使叶盘形状发生极细微的偏差也能够实时识别出来,而使用触发式系统却无法检测到这些偏差。”
“这项投资带来的回报远远超出了我们的预期。叶盘的精铣精度提高了三倍以上,而且相关的人力成本降低了一半。”

 

 

 

 

上一篇: 激光干涉仪特点 下一篇: 激光干涉仪的使用方法
提示

请选择您要拨打的电话: