编码器_位移传感器的外壳与屏蔽线接地吗-济南星峰编码器
时间:2023-07-22 阅读:39
编码器外壳与屏蔽线接地吗-济南星峰编码器
编码器的外壳和屏蔽线都接地吗?这个问题今天星峰小编带大家来了解一下。
原理上编码器的外壳与屏蔽线属于外壳保护性接地即屏蔽接地,很多编码器外壳与屏蔽线作了接触式导通,还有些是做了用电容连接的交流(高频)接地。
由编码器电缆屏蔽层接地,有些甚至与电源0V一起接地。但是很多情况下编码器的轴端连着电机,而编码器的轴与外壳的导通是通过滚珠轴承的滚珠,在旋转时是摩擦接触导通的。有时受动力三相不平衡影响,以及轴与外壳通过滚珠接触的导通不良与滚珠上微放电,外壳与屏蔽层导体的高频传导延迟性,轴端与外壳与电源0V三者很容易形成短瞬间电磁波落差走向,不当的全部三类接地混接的连接反而会引入干扰。
因此,还有些编码器外壳选择了屏蔽线与外壳的悬空,让用户根据现场各种电气状况选择外壳如何接地,屏蔽层如何接地。
编码器电缆屏蔽层接地只有“直接导通”吗?有时接一个电容也是“高频接地”,有时屏蔽层一端悬空甚至两端都悬空,也是高频电容接地了----当编码器导线大于30米时,屏蔽层与电缆内部的电源线形成了线间电容,高频干扰从线间电容倒入0V并接地,一端悬空可以避免从干扰源直接导入干扰。
在编码器信号传输较远时,需要外部再加长一根信号电缆传导100米时,我一般建议是屏蔽层在接收端接地。而在靠近编码器端将屏蔽层悬空
。电缆足够长度下,屏蔽层与电缆电源0V形成电容性接地,并避免编码器外壳、电缆屏蔽层、接收端0V三者的混合直接导通。由于这么长的距离,高频干扰传导的延迟时差必然存在,三者直接混合导通接地将形成线上电磁波落差走向,反而引入干扰在屏蔽层上走。影响到内部的信号。