机床商务网

登录

稀土对铁基合金激光熔覆层耐磨及耐蚀性能的影响

发布时间:2021/9/26 11:38:55
浏览次数:320
   激光表面熔敷技术具有涂层与基材结合牢固、涂层稀释率低、工件变形小等其他表面技术难以实现的特点和广阔的应用前景,在工业技术和科学研究领域引起了普遍重视。利用表面改性可以有效地改善机械零件或工具的使用性能和延长其使用寿命.工程材料的磨损和腐蚀等现象大多从表面开始,因此材料表面保护具有重要的工程应用价值.与此相适应,激光熔覆在提高材料表面抗磨性能方面的应用受到了广泛关注.稀土被人们称为新材料的“宝库”,自上世纪60年代被引用于金属及合金的表面改姓以来,这方面的科研工作进展迅速,取得了许多令人满意的成果。人们揭示出,稀土对多种金属具有净化、变质和合金化作用,可显著改善金属材料的力学性能、热加工性能、高温抗氧化性能、耐磨及耐腐蚀性能,因而在冶金、铸造及热处理等领域获得了广泛应用.我们预期,在铁基合金激光熔覆层中引入La将可能显著改善合金表面的抗磨性能,从而扩大其摩擦学应用范围.鉴于此,我们在铁基合金激光熔覆层中引入不同含量的La2O3,考察了稀土对铁基合金激光熔覆层组织及抗磨性能的影响.但目前稀土被引入激光熔敷工艺主要集中在钴基、镍基合金以及MCrAlY系合金涂层中。
1 试验材料及方法
1.1 试验材料
激光熔覆工艺
试验基材采用100 mm×30 mm×10 mm的45钢板;硬度约为220HV。以Fe基合金粉末(化学成分:0.21%C,1.18%B,3.25%Si,19.92%Cr, 12.60%Ni,其余为Fe;粒径0.085~0.246 mm;流动性﹤22 s/50 g)作为涂层材料,稀土CeO2粉末纯度为99.9%,稀土加入量分别为0.0%、0.3%、0.6%、0.9% 、1.2%和1.5%。将稀土氧化物粉末和铁基合金粉末通过机械搅拌混合均匀,,干燥待用.。
采用3kW的CO2快速轴流激光器(输出功率为1.5 kW,光斑直径4 mm,扫描速度5 mm/s,功率密度1.19×104W/cm2,多道熔覆搭接率30%,同轴送粉方式)进行激光熔覆处理,熔覆层厚度约1 mm.
1.2 性能测试
采用CSM950型场发射扫描电子显微镜(SEM)观察熔覆层微观组织形貌,并利用SEM所配置的能量色散X射线分析装置(EDAX)分析熔覆层及其磨痕表面组成.采用MT-3型显微硬度计沿熔覆层深度方向测量显微硬度分布,载荷为1.96×10-3N,加载时间5 s,取10次测量结果的平均值.
1.3 摩擦磨损试验
选用MM-200型摩擦磨损试验机评价激光熔覆层的摩擦磨损性能.试验前采用600#砂纸精磨激光熔覆层试样表面;偶件为45#钢环(外径40 mm,内径16 mm,厚10 mm,硬度500HV).选用载荷分别为10 N、20 N、30 N、40 N、50 N;试验时间15 min;线速度为0.42 m/s.在摩擦磨损试验过程中每隔1 min记录一次摩擦系数;试验结束后用丙酮清洗激光熔覆层试样,随后用读数显微镜测定其磨痕宽度(测量精确度0.01 mm).

相关技术文章:

分享到: